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Agenda

• Demand for high performance computing

• Intel computing architectures for HPC

• Cores: pipelines, execution units

• AVX-512 overview



The Three Pillars of Modern
Science, Research & Engineering

Experiment,
Observation

Theory
Numerical
Simulation



Discovery

High Performance Computing: 
A Fundamental Tool for Breakthroughs

Government & Academia Commercial/Industrial New Users – New Uses

Business Transformation Making insights

To Compete You Must Compute

Molecular 
Dynamics

Non-Invasive 
Diagnostics

Weather 
Prediction

Crash Test Simulation

CFD 
Curing Disease

Financial 
Trading 

Deep learning

Machine 
learning

Data 
Analytics
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Pentium® II Architecture

Pentium® 4 Architecture

Pentium® 
Architecture486

386

Intel® Core™ uArch

FLOPS/Processor

Pentium® III 
Architecture

TFLOPS

estimated

Future options subject to change without notice.  Source: Intel

Multi-Core

Time

Tera-Scale R&D

For illustration only, not drawn to scale. All dates, product descriptions, features, availability, and plans are forecasts and subject to change without 

notice.
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Many-Core

Increasing Processor Performance



„Big Core“ – „Small Core“

Intel® Xeon® Processor Intel® Xeon Phi™ Processor

Simply aggregating more cores generation after 

generation is not sufficient
Optimized for highest compute per watt

Performance per core/thread must increase each 

generation, be as fast as possible

Willing to trade performance per core/thread for 

aggregate performance

Power envelopes should stay flat or go down each 

generation

Power envelopes should also stay flat or go down 

every generation

Balanced platform (Memory, I/O, Compute) Optimized for highly parallel workloads

Cores, Threads, Caches, SIMD Cores, Threads, Caches, SIMD

Different Optimization Points
Common Programming Models

and Architectural Elements

For illustration only



Intel® Xeon®

processor 

5100 series

Intel®

Xeon®

processor 

5500 series

Intel®

Xeon®

processor 

5600 series

Intel® Xeon® E5-

2600 processor 

code-named 

Sandy Bridge 

EP

Intel® Xeon®

E5-2600 v2 

processor 

code-named

Ivy Bridge EP 

Intel® Xeon®

E5-2600 v3 

processor 

code-named

Haswell EP 

Intel® Xeon®

E5-2600 v4 

processor 

code-named

Broadwell 

EP 

Core(s) up to 2 4 6 8 12 18 22

Threads up to 2 8 12 16 24 36 44

SIMD Width (bits) 128 128 128 256 256 256 256

Intel® Xeon® and Intel® Xeon Phi™ Product Families are both going parallel

Intel® Xeon 

Phi™ 

coprocessor

code-named

Knights Corner

Intel® Xeon 

Phi™ processor

code-named 

Knights 

Landing

61 72

244 288

512 512

More Cores    More Threads    Wider Vectors
Potential future options subject to change without notice. Codenames.

All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.

Product specification for launched and shipped products available on ark.intel.com.

(die sizes not to scale, for illustration only)

Parallel is the Path Forward



Knights Corner Architecture Overview
Features of an Individual Core

• Up to 61 in-order cores

• 4 hardware threads per core

• Two pipelines

– Pentium® processor family-based scalar units

– Fully-coherent L1 and L2 caches

– 64-bit addressing

• All new vector unit

– 512-bit SIMD Instructions – not Intel® SSE, MMX™, or 
Intel® AVX

– 32x 512-bit wide vector registers

– Hold 16 singles or 8 doubles per register

– Pipelined one-per-clock throughput

– 4 clock latency, hidden by round-robin scheduling of 
threads

– Dual issue with scalar instructions

Ring

Scalar

Register

s

Vector

Register

s

256K L2 Cache

32K L1 I-cache

32K L1 D-cache

Instruction Decode

Vector

Unit

Scalar 

Unit



Vector/SIMD Unit

Mask Registers

16-wide Vector ALU

Replicate Reorder

Vector 

Registers

Numeric

Convert

L1 Data Cache

Numeric

Convert

Vector/SIMD High Computational Density

Ring

Scalar

Register

s

Vector

Register

s

256K L2 Cache

32K L1 I-cache

32K L1 D-cache

Instruction Decode

Vector

Unit

Scalar 

Unit



Knights Landing Core & VPU
• Out-of-order core w/ 4 SMT threads: 3x over KNC

• VPU tightly integrated with core pipeline

• 2-wide Decode/Rename/Retire

• ROB-based renaming. 72-entry ROB & Rename Buffers

• Up to 6-wide at execution

• Integer (Int) and floating point (FP) RS are OoO

• MEM RS in-order with OoO completion - Recycle Buffer 
holds memory ops waiting for completion

• Int and MEM RS hold source data, FP RS does not

• 2x 64B Load & 1x 64B Store ports in Dcache

• 1st level uTLB: 64 entries

• 2nd level dTLB: 256 4K, 128 2M, 16 1G pages

• L1 Prefetcher (IPP) and L2 Prefetcher

• 46/48 PA/VA bits

• Fast unaligned and cache-line split support

• Fast Gather/Scatter support



Haswell/Broadwell Core Microarchitecture

32k L1 Data Cache 

96 bytes/cycle
L2 Data Cache (MLC) Fill Buffers

HSW - Intel® Next Generation Microarchitecture AVX= Intel® Advanced Vector Extensions (Intel® AVX) 
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32K L1 Instruction Cache

Scheduler

Allocate/Rename/Retire Idiom Elimination
Load 

Buffer

s

Store 

Buffer

s

Reorder

Buffers

Pre decode
Instruction 

Queue
Decoders

1.5k uOP cache

DecodersDecoders

Branch Pred

In order

Out-of-

order` P
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Load &

Store Address

Store

Data

Integer ALU & Shift Integer ALU & LEA
Integer 

ALU & LEA Integer 

ALU & Shift
Store 

Address

FP Multiply

FMA

Divide

Branch

Vector Int Multiply

Vector Logicals

Vector Shifts

FP Add

FMA + FP Mult Vector

Shuffle

Branch
Vector Int ALU

Vector Int ALU

Vector Logicals
Vector Logicals

Memory Control



The Effect of SIMD (Single Core) 
Based on Amdahl’s Law

Xeon E5-2699 v4,

2.2 GHz (1 core)

Xeon Phi 7290

1.5GHz (1 core)

Simplified and for illustration only

48 GFLOPS [DP-

F.P.]

% 

SIMD/VECTOR
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Theoretical

Peak Performance

speedup using

Amdahl’s Law 

Simplified and for illustration only
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Positioning of SIMD Features 

ASM code (addps)

Vector intrinsic (_mm_add_ps())

SIMD intrinsic class (F32vec4 add)

SIMD feature (#pragma omp simd and simd function 
annotation)

Auto vectorization hints (#pragma ivdep)

Fully automatic vectorization

Programmer control

Ease of use



Sample: Manual Vectorization

• For the following slide we make the following assumptions 
(otherwise, we’d run out of space)

– Input and output data is properly aligned to 64 bytes

– Vector length is a multiple of the vector length

• If assumptions do not hold, add code to:

– Peel off iterations 0..m to get rid of alignment issue

– Have a vectorized loop to do the work

– Peel off iterations n..N-1 to deal with remaining data

void vecmul(float *a, float *b, float *c, int n)
{    

for (int k=0; k<n; k++)   
c[k] = a[k] * b[k];

}



Sample: Manual Vectorization

void vecmul(float *a, float *b, float *c, int n)

{

__m512 va;

__m512 vb;

__m512 vc;

for (int i = 0; i < a->size; i += 16, a += 16, b += 16, c += 16) {

va = _mm512_loadd(a, _MM_FULLUPC_NONE, _MM_BROADCAST_16X16, _MM_HINT_NONE);

vb = _mm512_loadd(b, _MM_FULLUPC_NONE, _MM_BROADCAST_16X16, _MM_HINT_NONE);

vc = _mm512_mul_ps(va, vb);

_mm512_stored(vc, c, _MM_DOWNC_NONE, _MM_SUBSET32_16, _MM_HINT_NONE);

}

}

• Loop unrolling by 16
(i.e. vector length)

• Increment pointers

Vector registers

Vector instructions



SIMD Instructions / Vectorization

• SSE: Streaming SIMD extension

• SIMD: Single instruction, Multiple Data (Flynn’s Taxonomy)

– e.g., SSE allows the identical treatment of 2 double, 4 floats and 4 
integers at the same time

Source vector a

Destination vector

Source vector bop

=

a0a1a2a3

b0b1b2b3

a0 op b0a1 op b1a2 op b2a3 op b3



Vectorization: SSE Data Types

2x double

4x float

16x byte

8x short

4x integer32

2x integer64

xmm register, 128 bit



Evolution to Intel AVX

Lane 1 Lane 0

ymm register, 256 bit



SIMD Instructions on Intel MIC and AVX512

zmm register, 512 bit/64 bytes



AVX512 - Greatly increased register file

Higher throughput

Greatly improved unrolling and inlining opportunities

32 vector registers, 512b wide: zmm0 through zmm31

– Overlaid on top of existing YMM arch  state

– Writing to xmm zeroes bits [511:128]

– writing to ymm zeroes bits [511:256]

8 mask registers, 64b wide: k0 through k7

– KNL only uses bits [15:0] though (PS,PD,D,Q)

– EVEX.aaa=000 is an indicator of “no mask” 

– {k0} is illegal

XMM0-
15 

16-
bytes

YMM0-15

32 bytes

ZMM0-
31 

64 bytes

SSE
AVX2

AVX-512

0127128255256511

XMM0YMM0ZMM0

XMM1YMM1ZMM1

XMM31YMM31ZMM31

k0

063

k1

k7



AVX-512 F Designed for HPC

Quadword
integer 

arithmetic

Including 
gather/scatter 
with D/Qword 

indices

Math support

IEEE division 
and square root

DP 
transcendental 

primitives

New 
transcendental 

support 
instructions

New 
permutation 
primitives

Two source 
shuffles

Compress & 
Expand

Bit 
manipulation

Vector rotate

Universal ternary 
logical operation

New mask 
instructions

• Promotions of many AVX and AVX2 instructions to AVX-512

− 32-bit and 64-bit floating-point instructions from AVX

− Scalar and 512-bit

− 32-bit and 64-bit integer instructions from AVX2

• Many new instructions to speedup HPC workloads



Wider data vector

float A[N], B[N], C[N]

for(i=0; i<8; i++)
{

C[i] = A[i] + B[i];
}

AVX2

float A[N], B[N], C[N]

for(i=0; i<16; i++)
{

C[i] = A[i] + B[i];
}

AVX-512

VADDPS YMM0, YMM1, YMM2 VADDPS ZMM0, ZMM1, ZMM2

32 x 512-bit registers

In each register:

16 float or 8 double

16 integer or 8 long

16 x 256-bit registers

In each register:

8 float or 4 double

8 integer or 4 long



Masking – new feature in AVX

a7 a6 a5 a4 a3 a2 a1 a0dst

b7 b6 b5 b4 b3 b2 b1 b0src1

b7+c7 a6 b5+c5 b4+c4 b3+c3 b2+c2 a1 a0dst

k1 1 0 1 1 1 1 0 0

src2 c7 c6 c5 c4 c3 c2 c1 c0

Unmasked elements remain 

unchanged:

VADDPD zmm1 {k1}, zmm2, zmm3

b7+c7 0 b5+c5 b4+c4 b3+c3 b2+c2 0 0dstOr zeroed:

VADDPD zmm1 {k1} {z}, zmm2, 

zmm3

Create mask:

VCMPPS k1, zmm1, zmm2, imm

k1 = ..0101100111 /* 16 bits */

VCMPPD k1, zmm1, zmm2, imm

k1 = ..01011001   /* 8 bits */

Use mask:

VADDPD dst {k1}, src1, src2

8 new mask registers k0-k7



• Memory fault suppression

– Vectorize code using masked load/store

– Typical examples are if-conditional statements or loop remainders

• Avoid spurious floating-point exceptions 

• Zeroing/merging

– Use zeroing to avoid false dependencies     VADDPD zmm1 {k1} {z}, zmm2, zmm3

– Use merging to preserve unmasked values  VADDPD zmm1 {k1} , zmm2, zmm3

float A[N], B[N], C[N];
for(i=0; i<16; i++)
{

if (B[i] != 0)
A[i] = A[i] / B[i];

else
A[i] = A[i] / C[i];   

}

VMOVUPS zmm2, A[16]

VCMPPS k1, zmm0, B

VDIVPS  zmm1 {k1}{z}, zmm2, B

KNOT k2, k1

VDIVPS  zmm1 {k2}, zmm2, C

VMOVUPS A[16], zmm1

Why masking?



Why Separate Mask Registers?

• Don’t waste away real vector registers for vector of booleans

• Separate control flow from data flow

• Boolean operations on logical predicates consume less 

energy (separate functional unit)

• Tight encoding allows orthogonal operand

– Every instruction now has an extra mask operand



Embedded Broadcast

Broadcast one scalar from memory into all vector elements

long A[N], B[N], C

for(i=0; i<8; i++)
{
if(A[i]!=0.0)  
B[i] = A[i] + C;

}

VADDPS zmm1 {k1}, zmm2, C {1to16}

• Scalars from memory are first class citizens

• Broadcast one scalar from memory into all vector 

elements before operation

• Memory fault suppression avoids fetching the scalar if 

no mask bit is set to 1

C C C C

A7 A6 A5 A4

C C C C

A3 A2 A1 A0

C

B7 B6 B5 B4 B3 B2 B1 B0

+

=



VGATHER/VSCATTER Operation

rax+0

rax+1

rax+2

rax+4

5

6

7

8

9

rax+3

vscatter [rax+v3]{k2}, v1
-- same as vgather, but in reverse

vgather v1{k2},[rax+v3]
v3 = 3 0 1 2 5 4 2 1 2 0 3 0 3 6 2 1

k2 = 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1

v1 = 8 5 6 0 0 9 7 0 7 5 0 0 0 0 7 6



Embedded Rounding Control

• Set Rounding Control

– AVX2 and before – access MXCSR.RC

– Saving, modifying and restoring MXCSR is usually slow and cumbersome

• AVX-512 – define rounding control per instruction

VADDPS ZMM1 , ZMM2, ZMM3 {rne-sae}

– “Suspend All Exceptions”

– Always implied by using embedded RC

– NO MXCSR updates / exception reporting for any lane

STMXCSR [ESI]                ;store the MXCSR into memory
MOV EAX,[ESI]            ;put into EAX 
AND AH,9Fh      ;clear existing rounding bits (bits 13/14 of eax) 
OR AH,20h      ;set rounding down 
MOV [ESI],EAX   ;put back into memory 
LDMXCSR [ESI]       ;and put that into processor ;



Expand & Compress

A0 A1 A2 A3

A1 A2 A3 A6

A4 A5 A6 A7

A7

Mask: k[] = 01110011
Zeroed in the 

register form

c
o

m
p

re
s
s

X A0 A1 A2

A0 A1 A2 A3

X X A3 A4

A4

Mask: k[] = 

01110011

All “X” are zeroed or 

remain unchangede
x
p

a
n

d

double A[N], B[N], C[N];
for(i=0; i<8; i++)
{
if (B[i] != 0)

*dst++ = A[i]; 
}

VMOVUPD zmm2, A[8]

VCMPPD k1, zmm0, B

VCOMPRESSPD [dst] {k1}, zmm2



Quadword Integer Arithmetic

Instruction Description

VPADDQ zmm1 {k1}, zmm2, zmm3 INT64 addition

VPSUBQ zmm1 {k1}, zmm2, zmm3 INT64 subtraction

VP{SRA,SRL,SLL}Q zmm1 {k1}, zmm2, imm8 INT64 shift (imm8)

VP{SRA,SRL,SLL}VQ zmm1 {k1}, zmm2, zmm3 INT64 shift (variable)

VP{MAX,MIN}Q zmm1 {k1}, zmm2, zmm3 INT64 max, min

VP{MAX,MIN}UQ zmm1 {k1}, zmm2, zmm3 UINT64 max, min

VPABSQ zmm1 {k1}, zmm2, zmm3 INT64 absolute value

VPMUL{DQ,UDQ} zmm1 {k1}, zmm2, zmm3 32x32 = 64 integer multiply

Note: VPMULQ and int64 <-> FP converts not in AVX-512 F

Useful for pointer manipulation

64-bit becomes a first class citizen

Removes the need for expensive SW emulation sequences



Math Support

Instruction

VGETXEXP{PS,PD,SS,SD}

VGETMANT{PS,PD,SS,SD}

VRNDSCALE{PS,PD,SS,SD}   

VSCALEF {PS,PD,SS,SD}          

VFIXUPIMM{PS,PD,SS,SD}

VRCP14{PS,PD,SS,SD}               

VRSQRT14{PS,PD,SS,SD}       

VDIV{PS,PD,SS,SD}

VSQRT{PS,PD,SS,SD}

zmm1 {k1}, zmm2 Obtain exponent in FP format

zmm1 {k1}, zmm2 Obtain normalized mantissa

zmm1 {k1}, zmm2, imm8 Round to scaled integral number

zmm1 {k1}, zmm2, zmm3 X*2y , X <= getmant, Y <= getexp

zmm1, zmm2, zmm3, imm8 Patch output numbers based on inputs

zmm1 {k1}, zmm2 Approx. reciprocal() with rel. error 2-14

zmm1 {k1}, zmm2 Approx. rsqrt() with rel. error 2-14

zmm1 {k1}, zmm2, zmm3 IEEE division

zmm1 {k1}, zmm2 IEEE square root

Package to aid with Math library writing

• Good value upside in financial applications 

• Available in PS, PD, SS and SD data types

• Great in combination with embedded RC



New 2-Source Shuffles
2-Src Shuffles

VSHUF{PS,PD}

VPUNPCK{H,L}{DQ,QDQ}

VUNPCK{H,L}{PS,PD}

VPERM{I,D}2{D,Q,PS,PD}

VSHUF{F,I}32X4

H’ G’ F’ E’ D’ C’ B’ A’ H G F E D C B A

zmm2 zmm3
15 0 10 11 2 2 0 9

zmm1

H’ A C’ D’ C C A B’zmm1

Long standing customer request

• 16/32-entry table lookup (transcendental support)

• AOS  SOA support, matrix transpose

• Variable VALIGN emulation

10 9 8 7 6 5 4 3 2 1 0…



Bit Manipulation

Instruction Description

KUNPCKBW k1, k2, k3 Interleave bytes in k2 and k3

KSHIFT{L,R}W k1, k2, imm8 Shift bits left/right using imm8

VPROR{D,Q} zmm1 {k1}, zmm2, imm8 Rotate bits right using imm8

VPROL{D,Q} zmm1 {k1}, zmm2, imm8 Rotate bits left using imm8

VPRORV{D,Q} zmm1 {k1}, zmm2, zmm3/mem Rotate bits right w/ variable ctrl

VPROLV{D,Q} zmm1 {k1}, zmm2, zmm3/mem Rotate bits left w/ variable ctrl

Basic bit manipulation operations on mask and vector operands
• Useful to manipulate mask registers

• Have uses in cryptography algorithms



VPTERNLOG – Ternary Logic Instruction
• Mimics a FPGA cell

– Take every bit of three sources to obtain a 3-bit index N

– Obtain Nth bit from imm8

Imm8[7:0]

Dest[i]

src0[i]
src1[i]

src2[i]

Any arbitrary truth table of 3 values can be 

implemented

andor, andxor, vote, parity,  bitwise-cmov, etc.

each column in the right table corresponds to imm8

S1  S2  S3 ANDOR  VOTE (S1)?S3:S2
0   0   0 0     0      0
0   0   1 1     0      1
0   1   0 0     0      0
0   1   1 1     1      1
1   0   0 0     0      0
1   0   1 1     1      0
1   1   0 1     1      1
1   1   1 1     1      1

VPTERNLOGD  zmm0 {k2}, zmm15, zmm3/[rax], imm8



Motivation for Conflict Detection

• Sparse computations are common in HPC, but hard to 
vectorize due to race conditions

• Consider the “histogram” problem:

index = vload &B[i]                // Load 16 B[i]
old_val = vgather A, index         // Grab A[B[i]]
new_val = vadd old_val, +1.0       // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++; }

• Code above is wrong if any values within B[i] are duplicated

− Only one update from the repeated index would be registered! 

• A solution to the problem would be to avoid executing the sequence gather-

op-scatter with vector of indexes that contain conflicts



Conflict Detection – how does it work?

conflict-free 

mask 1 1 1 0 10 01

2 79 3 2 2 78

mask

indices

1 1 1 1 11 11

It
e

ra
ti
o

n
 1

conflict-free 

mask
0 0 0 1 00 10

9 3 2 2 72 78

mask

indices

0 0 0 1 01 10

It
e
ra

ti
o
n
 2

conflict-free 

mask
0 0 0 0 01 00

9 3 2 2 72 78

mask

indices

0 0 0 0 01 00

It
e
ra

ti
o
n
 3



Conflict Free Code

j = vload &B[i] 
pending_elts = 0xFFFF;
do {   
mask = conflict_free(j, pending_elts)
val_A = vgather {mask} A, j           // Grab A[j]
val_A++                               // Compute new values
vscatter A {mask}, j, val_A // Update A[j]
pending_elts ^= mask // remove done idx

} while (pending_elts)

for(i=0; i<16; i++) 
{ 
j = B[i]; 
A[j]++;

}

CDI instr.

VPCONFLICT{D,Q}  zmm1{k1}, 

zmm2/mem

VPBROADCASTM{W2D,B2Q} zmm1, k2

VPTESTNM{D,Q} k2{k1}, zmm2, 

zmm3/mem

VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

VPCONFLICT instruction detects elements with previous conflicts in a vector of indexes

Allows to generate a mask with a subset of elements that are guaranteed to be conflict free



Summary

• Continuous demand for high performance computing 

solution fuels innovation in architectures to address technical 

challenges

• Intel offers highly optimized architectures for HPC solutions

• AVX-512 is the greatest addition to x86 ISA family to drive 

continuous performance improvements



Questions?




