
Intel Technologies for
High Performance Computing

Applications

Andrey Semin

Principal Engineer
Software and Services Group

September 7, 2016

To Compete, You Must Compute!*

* Susan Baldwin, Executive Director of Compute Canada

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS

INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are

measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other

information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel's current plan of record product

roadmaps.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include

SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not

manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to:

http://www.intel.com/products/processor_number

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current

characterized errata are available on request.

Intel, Intel Xeon, Intel Xeon Phi, Intel Hadoop Distribution, Intel Cluster Ready, Intel OpenMP, Intel Cilk Plus, Intel Threaded Building blocks, Intel Cluster Studio, Intel Parallel Studio, Intel

Coarray Fortran, Intel Math Kernel Library, Intel Enterprise Edition for Lustre Software, Intel Composer, the Intel Xeon Phi logo, the Intel Xeon logo and the Intel logo are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the

referenced Web sites or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of

systems available for purchase.

Other names, brands , and images may be claimed as the property of others.

Copyright © 2016, Intel Corporation. All rights reserved.

Legal Information

Agenda

• Demand for high performance computing

• Intel computing architectures for HPC

• Cores: pipelines, execution units

• AVX-512 overview

The Three Pillars of Modern
Science, Research & Engineering

Experiment,
Observation

Theory
Numerical
Simulation

Discovery

High Performance Computing:
A Fundamental Tool for Breakthroughs

Government & Academia Commercial/Industrial New Users – New Uses

Business Transformation Making insights

To Compete You Must Compute

Molecular
Dynamics

Non-Invasive
Diagnostics

Weather
Prediction

Crash Test Simulation

CFD
Curing Disease

Financial
Trading

Deep learning

Machine
learning

Data
Analytics

Need for Speed

S
o
u
rc

e
:
w

w
w

.t
o
p
5
0

0
.o

rg

Pentium® II Architecture

Pentium® 4 Architecture

Pentium®
Architecture486

386

Intel® Core™ uArch

FLOPS/Processor

Pentium® III
Architecture

TFLOPS

estimated

Future options subject to change without notice. Source: Intel

Multi-Core

Time

Tera-Scale R&D

For illustration only, not drawn to scale. All dates, product descriptions, features, availability, and plans are forecasts and subject to change without

notice.

P
e

rf
o

rm
a

n
c
e

Many-Core

Increasing Processor Performance

„Big Core“ – „Small Core“

Intel® Xeon® Processor Intel® Xeon Phi™ Processor

Simply aggregating more cores generation after

generation is not sufficient
Optimized for highest compute per watt

Performance per core/thread must increase each

generation, be as fast as possible

Willing to trade performance per core/thread for

aggregate performance

Power envelopes should stay flat or go down each

generation

Power envelopes should also stay flat or go down

every generation

Balanced platform (Memory, I/O, Compute) Optimized for highly parallel workloads

Cores, Threads, Caches, SIMD Cores, Threads, Caches, SIMD

Different Optimization Points
Common Programming Models

and Architectural Elements

For illustration only

Intel® Xeon®

processor

5100 series

Intel®

Xeon®

processor

5500 series

Intel®

Xeon®

processor

5600 series

Intel® Xeon® E5-

2600 processor

code-named

Sandy Bridge

EP

Intel® Xeon®

E5-2600 v2

processor

code-named

Ivy Bridge EP

Intel® Xeon®

E5-2600 v3

processor

code-named

Haswell EP

Intel® Xeon®

E5-2600 v4

processor

code-named

Broadwell

EP

Core(s) up to 2 4 6 8 12 18 22

Threads up to 2 8 12 16 24 36 44

SIMD Width (bits) 128 128 128 256 256 256 256

Intel® Xeon® and Intel® Xeon Phi™ Product Families are both going parallel

Intel® Xeon

Phi™

coprocessor

code-named

Knights Corner

Intel® Xeon

Phi™ processor

code-named

Knights

Landing

61 72

244 288

512 512

More Cores  More Threads  Wider Vectors
Potential future options subject to change without notice. Codenames.

All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.

Product specification for launched and shipped products available on ark.intel.com.

(die sizes not to scale, for illustration only)

Parallel is the Path Forward

Knights Corner Architecture Overview
Features of an Individual Core

• Up to 61 in-order cores

• 4 hardware threads per core

• Two pipelines

– Pentium® processor family-based scalar units

– Fully-coherent L1 and L2 caches

– 64-bit addressing

• All new vector unit

– 512-bit SIMD Instructions – not Intel® SSE, MMX™, or
Intel® AVX

– 32x 512-bit wide vector registers

– Hold 16 singles or 8 doubles per register

– Pipelined one-per-clock throughput

– 4 clock latency, hidden by round-robin scheduling of
threads

– Dual issue with scalar instructions

Ring

Scalar

Register

s

Vector

Register

s

256K L2 Cache

32K L1 I-cache

32K L1 D-cache

Instruction Decode

Vector

Unit

Scalar

Unit

Vector/SIMD Unit

Mask Registers

16-wide Vector ALU

Replicate Reorder

Vector

Registers

Numeric

Convert

L1 Data Cache

Numeric

Convert

Vector/SIMD High Computational Density

Ring

Scalar

Register

s

Vector

Register

s

256K L2 Cache

32K L1 I-cache

32K L1 D-cache

Instruction Decode

Vector

Unit

Scalar

Unit

Knights Landing Core & VPU
• Out-of-order core w/ 4 SMT threads: 3x over KNC

• VPU tightly integrated with core pipeline

• 2-wide Decode/Rename/Retire

• ROB-based renaming. 72-entry ROB & Rename Buffers

• Up to 6-wide at execution

• Integer (Int) and floating point (FP) RS are OoO

• MEM RS in-order with OoO completion - Recycle Buffer
holds memory ops waiting for completion

• Int and MEM RS hold source data, FP RS does not

• 2x 64B Load & 1x 64B Store ports in Dcache

• 1st level uTLB: 64 entries

• 2nd level dTLB: 256 4K, 128 2M, 16 1G pages

• L1 Prefetcher (IPP) and L2 Prefetcher

• 46/48 PA/VA bits

• Fast unaligned and cache-line split support

• Fast Gather/Scatter support

Haswell/Broadwell Core Microarchitecture

32k L1 Data Cache

96 bytes/cycle
L2 Data Cache (MLC) Fill Buffers

HSW - Intel® Next Generation Microarchitecture AVX= Intel® Advanced Vector Extensions (Intel® AVX)

P
o

rt 7

P
o

rt
6

32K L1 Instruction Cache

Scheduler

Allocate/Rename/Retire Idiom Elimination
Load

Buffer

s

Store

Buffer

s

Reorder

Buffers

Pre decode
Instruction

Queue
Decoders

1.5k uOP cache

DecodersDecoders

Branch Pred

In order

Out-of-

order` P
o

rt
1

P
o

rt 2

P
o

rt 3

P
o

rt
4

P
o

rt 5

P
o

rt
0

Load &

Store Address

Store

Data

Integer ALU & Shift Integer ALU & LEA
Integer

ALU & LEA Integer

ALU & Shift
Store

Address

FP Multiply

FMA

Divide

Branch

Vector Int Multiply

Vector Logicals

Vector Shifts

FP Add

FMA + FP Mult Vector

Shuffle

Branch
Vector Int ALU

Vector Int ALU

Vector Logicals
Vector Logicals

Memory Control

The Effect of SIMD (Single Core)
Based on Amdahl’s Law

Xeon E5-2699 v4,

2.2 GHz (1 core)

Xeon Phi 7290

1.5GHz (1 core)

Simplified and for illustration only

48 GFLOPS [DP-

F.P.]

%

SIMD/VECTOR

M
a

x
im

u
m

 A
tt

a
in

a
b

le
 P

e
a

k
 P

e
rf

o
rm

a
n

c
e

[G
F

L
O

P
S

] 35 GFLOPS

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70
0.80
0.90
1.00

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

4,00-4,50

3,50-4,00

3,00-3,50

2,50-3,00

2,00-2,50

1,50-2,00

1,00-1,50

0,50-1,00

0,00-0,50

Maximum Theoretical Speedups
1 Xeon Phi 7290 vs. 2 socket Xeon E5-2699 v4 (2.2GHz, 22 cores)

N
o

ti
c
e
:

T
h

is
 d

o
c
u

m
e
n

t
c
o

n
ta

in
s
 i

n
fo

rm
a
ti

o
n

 o
n

 p
ro

d
u

c
ts

 i
n

 t
h

e
 d

e
s
ig

n
 p

h
a
s
e
 o

f
d

e
v
e
lo

p
m

e
n

t.
 T

h
e

in
fo

rm
a
ti

o
n

 h
e
re

 i
s
 s

u
b

je
c
t

to
 c

h
a
n

g
e
 w

it
h

o
u

t
n

o
ti

c
e
.

D
o

 n
o

t
fi

n
a
li
z
e
 a

 d
e
s
ig

n
 w

it
h

 t
h

is
 i

n
fo

rm
a
ti

o
n

.
C

o
n

ta
c
t

y
o

u
r

lo
c
a
l

In
te

l
s
a
le

s
 o

ff
ic

e
 o

r
y
o

u
r

d
is

tr
ib

u
to

r
to

 o
b

ta
in

 t
h

e
 l

a
te

s
t

s
p

e
c
if

ic
a
ti

o
n

 b
e
fo

re

p
la

c
in

g
 y

o
u

r
p

ro
d

u
c
t

o
rd

e
r.

K
n

ig
h

ts
 C

o
rn

e
r

a
n

d
 o

th
e
r

c
o

d
e
 n

a
m

e
s
 f

e
a
tu

re
d

 a
re

 u
s
e
d

 i
n

te
rn

a
ll

y
 w

it
h

in
 I

n
te

l
to

 i
d

e
n

ti
fy

 p
ro

d
u

c
ts

th

a
t

a
re

 i
n

 d
e
v
e
lo

p
m

e
n

t
a
n

d
 n

o
t

y
e
t

p
u

b
li
c
ly

 a
n

n
o

u
n

c
e
d

 f
o

r
re

le
a
s
e
.

 C
u

s
to

m
e
rs

,
li
c
e
n

s
e
e
s
 a

n
d

 o
th

e
r

th
ir

d
 p

a
rt

ie
s
 a

re
 n

o
t

a
u

th
o

ri
z
e
d

 b
y
 I

n
te

l
to

 u
s
e
 c

o
d

e
 n

a
m

e
s
 i

n
 a

d
v
e
rt

is
in

g
,

p
ro

m
o

ti
o

n
 o

r
m

a
rk

e
ti

n
g

 o
f

a
n

y
 p

ro
d

u
c
t

o
r

s
e
rv

ic
e
s
 a

n
d

 a
n

y
 s

u
c
h

 u
s
e
 o

f
In

te
l'
s
 i

n
te

rn
a
l

c
o

d
e
 n

a
m

e
s
 i

s
 a

t
th

e
 s

o
le

 r
is

k
 o

f
th

e

u
s
e
r.

 A
ll
 p

ro
d

u
c
ts

,
c
o

m
p

u
te

r
s
y
s
te

m
s

,
d

a
te

s
,

a
n

d
 f

ig
u

re
s
 s

p
e
c
if

ie
d

 a
re

 p
re

li
m

in
a
ry

 b
a
s
e
d

 o
n

 c
u

rr
e
n

t
e
x
p

e
c
ta

ti
o

n
s

,
a
n

d
 a

re
 s

u
b

je
c
t

to
 c

h
a
n

g
e
 w

it
h

o
u

t
n

o
ti

c
e
.

Theoretical

Peak Performance

speedup using

Amdahl’s Law

Simplified and for illustration only

M
a

x
im

u
m

 p
o

s
s
ib

le
 s

p
e

e
d

u
p

Positioning of SIMD Features

ASM code (addps)

Vector intrinsic (_mm_add_ps())

SIMD intrinsic class (F32vec4 add)

SIMD feature (#pragma omp simd and simd function
annotation)

Auto vectorization hints (#pragma ivdep)

Fully automatic vectorization

Programmer control

Ease of use

Sample: Manual Vectorization

• For the following slide we make the following assumptions
(otherwise, we’d run out of space)

– Input and output data is properly aligned to 64 bytes

– Vector length is a multiple of the vector length

• If assumptions do not hold, add code to:

– Peel off iterations 0..m to get rid of alignment issue

– Have a vectorized loop to do the work

– Peel off iterations n..N-1 to deal with remaining data

void vecmul(float *a, float *b, float *c, int n)
{

for (int k=0; k<n; k++)
c[k] = a[k] * b[k];

}

Sample: Manual Vectorization

void vecmul(float *a, float *b, float *c, int n)

{

__m512 va;

__m512 vb;

__m512 vc;

for (int i = 0; i < a->size; i += 16, a += 16, b += 16, c += 16) {

va = _mm512_loadd(a, _MM_FULLUPC_NONE, _MM_BROADCAST_16X16, _MM_HINT_NONE);

vb = _mm512_loadd(b, _MM_FULLUPC_NONE, _MM_BROADCAST_16X16, _MM_HINT_NONE);

vc = _mm512_mul_ps(va, vb);

_mm512_stored(vc, c, _MM_DOWNC_NONE, _MM_SUBSET32_16, _MM_HINT_NONE);

}

}

• Loop unrolling by 16
(i.e. vector length)

• Increment pointers

Vector registers

Vector instructions

SIMD Instructions / Vectorization

• SSE: Streaming SIMD extension

• SIMD: Single instruction, Multiple Data (Flynn’s Taxonomy)

– e.g., SSE allows the identical treatment of 2 double, 4 floats and 4
integers at the same time

Source vector a

Destination vector

Source vector bop

=

a0a1a2a3

b0b1b2b3

a0 op b0a1 op b1a2 op b2a3 op b3

Vectorization: SSE Data Types

2x double

4x float

16x byte

8x short

4x integer32

2x integer64

xmm register, 128 bit

Evolution to Intel AVX

Lane 1 Lane 0

ymm register, 256 bit

SIMD Instructions on Intel MIC and AVX512

zmm register, 512 bit/64 bytes

AVX512 - Greatly increased register file

Higher throughput

Greatly improved unrolling and inlining opportunities

32 vector registers, 512b wide: zmm0 through zmm31

– Overlaid on top of existing YMM arch state

– Writing to xmm zeroes bits [511:128]

– writing to ymm zeroes bits [511:256]

8 mask registers, 64b wide: k0 through k7

– KNL only uses bits [15:0] though (PS,PD,D,Q)

– EVEX.aaa=000 is an indicator of “no mask”

– {k0} is illegal

XMM0-
15

16-
bytes

YMM0-15

32 bytes

ZMM0-
31

64 bytes

SSE
AVX2

AVX-512

0127128255256511

XMM0YMM0ZMM0

XMM1YMM1ZMM1

XMM31YMM31ZMM31

k0

063

k1

k7

AVX-512 F Designed for HPC

Quadword
integer

arithmetic

Including
gather/scatter
with D/Qword

indices

Math support

IEEE division
and square root

DP
transcendental

primitives

New
transcendental

support
instructions

New
permutation
primitives

Two source
shuffles

Compress &
Expand

Bit
manipulation

Vector rotate

Universal ternary
logical operation

New mask
instructions

• Promotions of many AVX and AVX2 instructions to AVX-512

− 32-bit and 64-bit floating-point instructions from AVX

− Scalar and 512-bit

− 32-bit and 64-bit integer instructions from AVX2

• Many new instructions to speedup HPC workloads

Wider data vector

float A[N], B[N], C[N]

for(i=0; i<8; i++)
{

C[i] = A[i] + B[i];
}

AVX2

float A[N], B[N], C[N]

for(i=0; i<16; i++)
{

C[i] = A[i] + B[i];
}

AVX-512

VADDPS YMM0, YMM1, YMM2 VADDPS ZMM0, ZMM1, ZMM2

32 x 512-bit registers

In each register:

16 float or 8 double

16 integer or 8 long

16 x 256-bit registers

In each register:

8 float or 4 double

8 integer or 4 long

Masking – new feature in AVX

a7 a6 a5 a4 a3 a2 a1 a0dst

b7 b6 b5 b4 b3 b2 b1 b0src1

b7+c7 a6 b5+c5 b4+c4 b3+c3 b2+c2 a1 a0dst

k1 1 0 1 1 1 1 0 0

src2 c7 c6 c5 c4 c3 c2 c1 c0

Unmasked elements remain

unchanged:

VADDPD zmm1 {k1}, zmm2, zmm3

b7+c7 0 b5+c5 b4+c4 b3+c3 b2+c2 0 0dstOr zeroed:

VADDPD zmm1 {k1} {z}, zmm2,

zmm3

Create mask:

VCMPPS k1, zmm1, zmm2, imm

k1 = ..0101100111 /* 16 bits */

VCMPPD k1, zmm1, zmm2, imm

k1 = ..01011001 /* 8 bits */

Use mask:

VADDPD dst {k1}, src1, src2

8 new mask registers k0-k7

• Memory fault suppression

– Vectorize code using masked load/store

– Typical examples are if-conditional statements or loop remainders

• Avoid spurious floating-point exceptions

• Zeroing/merging

– Use zeroing to avoid false dependencies VADDPD zmm1 {k1} {z}, zmm2, zmm3

– Use merging to preserve unmasked values VADDPD zmm1 {k1} , zmm2, zmm3

float A[N], B[N], C[N];
for(i=0; i<16; i++)
{

if (B[i] != 0)
A[i] = A[i] / B[i];

else
A[i] = A[i] / C[i];

}

VMOVUPS zmm2, A[16]

VCMPPS k1, zmm0, B

VDIVPS zmm1 {k1}{z}, zmm2, B

KNOT k2, k1

VDIVPS zmm1 {k2}, zmm2, C

VMOVUPS A[16], zmm1

Why masking?

Why Separate Mask Registers?

• Don’t waste away real vector registers for vector of booleans

• Separate control flow from data flow

• Boolean operations on logical predicates consume less

energy (separate functional unit)

• Tight encoding allows orthogonal operand

– Every instruction now has an extra mask operand

Embedded Broadcast

Broadcast one scalar from memory into all vector elements

long A[N], B[N], C

for(i=0; i<8; i++)
{
if(A[i]!=0.0)
B[i] = A[i] + C;

}

VADDPS zmm1 {k1}, zmm2, C {1to16}

• Scalars from memory are first class citizens

• Broadcast one scalar from memory into all vector

elements before operation

• Memory fault suppression avoids fetching the scalar if

no mask bit is set to 1

C C C C

A7 A6 A5 A4

C C C C

A3 A2 A1 A0

C

B7 B6 B5 B4 B3 B2 B1 B0

+

=

VGATHER/VSCATTER Operation

rax+0

rax+1

rax+2

rax+4

5

6

7

8

9

rax+3

vscatter [rax+v3]{k2}, v1
-- same as vgather, but in reverse

vgather v1{k2},[rax+v3]
v3 = 3 0 1 2 5 4 2 1 2 0 3 0 3 6 2 1

k2 = 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1

v1 = 8 5 6 0 0 9 7 0 7 5 0 0 0 0 7 6

Embedded Rounding Control

• Set Rounding Control

– AVX2 and before – access MXCSR.RC

– Saving, modifying and restoring MXCSR is usually slow and cumbersome

• AVX-512 – define rounding control per instruction

VADDPS ZMM1 , ZMM2, ZMM3 {rne-sae}

– “Suspend All Exceptions”

– Always implied by using embedded RC

– NO MXCSR updates / exception reporting for any lane

STMXCSR [ESI] ;store the MXCSR into memory
MOV EAX,[ESI] ;put into EAX
AND AH,9Fh ;clear existing rounding bits (bits 13/14 of eax)
OR AH,20h ;set rounding down
MOV [ESI],EAX ;put back into memory
LDMXCSR [ESI] ;and put that into processor ;

Expand & Compress

A0 A1 A2 A3

A1 A2 A3 A6

A4 A5 A6 A7

A7

Mask: k[] = 01110011
Zeroed in the

register form

c
o

m
p

re
s
s

X A0 A1 A2

A0 A1 A2 A3

X X A3 A4

A4

Mask: k[] =

01110011

All “X” are zeroed or

remain unchangede
x
p

a
n

d

double A[N], B[N], C[N];
for(i=0; i<8; i++)
{
if (B[i] != 0)

*dst++ = A[i];
}

VMOVUPD zmm2, A[8]

VCMPPD k1, zmm0, B

VCOMPRESSPD [dst] {k1}, zmm2

Quadword Integer Arithmetic

Instruction Description

VPADDQ zmm1 {k1}, zmm2, zmm3 INT64 addition

VPSUBQ zmm1 {k1}, zmm2, zmm3 INT64 subtraction

VP{SRA,SRL,SLL}Q zmm1 {k1}, zmm2, imm8 INT64 shift (imm8)

VP{SRA,SRL,SLL}VQ zmm1 {k1}, zmm2, zmm3 INT64 shift (variable)

VP{MAX,MIN}Q zmm1 {k1}, zmm2, zmm3 INT64 max, min

VP{MAX,MIN}UQ zmm1 {k1}, zmm2, zmm3 UINT64 max, min

VPABSQ zmm1 {k1}, zmm2, zmm3 INT64 absolute value

VPMUL{DQ,UDQ} zmm1 {k1}, zmm2, zmm3 32x32 = 64 integer multiply

Note: VPMULQ and int64 <-> FP converts not in AVX-512 F

Useful for pointer manipulation

64-bit becomes a first class citizen

Removes the need for expensive SW emulation sequences

Math Support

Instruction

VGETXEXP{PS,PD,SS,SD}

VGETMANT{PS,PD,SS,SD}

VRNDSCALE{PS,PD,SS,SD}

VSCALEF {PS,PD,SS,SD}

VFIXUPIMM{PS,PD,SS,SD}

VRCP14{PS,PD,SS,SD}

VRSQRT14{PS,PD,SS,SD}

VDIV{PS,PD,SS,SD}

VSQRT{PS,PD,SS,SD}

zmm1 {k1}, zmm2 Obtain exponent in FP format

zmm1 {k1}, zmm2 Obtain normalized mantissa

zmm1 {k1}, zmm2, imm8 Round to scaled integral number

zmm1 {k1}, zmm2, zmm3 X*2y , X <= getmant, Y <= getexp

zmm1, zmm2, zmm3, imm8 Patch output numbers based on inputs

zmm1 {k1}, zmm2 Approx. reciprocal() with rel. error 2-14

zmm1 {k1}, zmm2 Approx. rsqrt() with rel. error 2-14

zmm1 {k1}, zmm2, zmm3 IEEE division

zmm1 {k1}, zmm2 IEEE square root

Package to aid with Math library writing

• Good value upside in financial applications

• Available in PS, PD, SS and SD data types

• Great in combination with embedded RC

New 2-Source Shuffles
2-Src Shuffles

VSHUF{PS,PD}

VPUNPCK{H,L}{DQ,QDQ}

VUNPCK{H,L}{PS,PD}

VPERM{I,D}2{D,Q,PS,PD}

VSHUF{F,I}32X4

H’ G’ F’ E’ D’ C’ B’ A’ H G F E D C B A

zmm2 zmm3
15 0 10 11 2 2 0 9

zmm1

H’ A C’ D’ C C A B’zmm1

Long standing customer request

• 16/32-entry table lookup (transcendental support)

• AOS  SOA support, matrix transpose

• Variable VALIGN emulation

10 9 8 7 6 5 4 3 2 1 0…

Bit Manipulation

Instruction Description

KUNPCKBW k1, k2, k3 Interleave bytes in k2 and k3

KSHIFT{L,R}W k1, k2, imm8 Shift bits left/right using imm8

VPROR{D,Q} zmm1 {k1}, zmm2, imm8 Rotate bits right using imm8

VPROL{D,Q} zmm1 {k1}, zmm2, imm8 Rotate bits left using imm8

VPRORV{D,Q} zmm1 {k1}, zmm2, zmm3/mem Rotate bits right w/ variable ctrl

VPROLV{D,Q} zmm1 {k1}, zmm2, zmm3/mem Rotate bits left w/ variable ctrl

Basic bit manipulation operations on mask and vector operands
• Useful to manipulate mask registers

• Have uses in cryptography algorithms

VPTERNLOG – Ternary Logic Instruction
• Mimics a FPGA cell

– Take every bit of three sources to obtain a 3-bit index N

– Obtain Nth bit from imm8

Imm8[7:0]

Dest[i]

src0[i]
src1[i]

src2[i]

Any arbitrary truth table of 3 values can be

implemented

andor, andxor, vote, parity, bitwise-cmov, etc.

each column in the right table corresponds to imm8

S1 S2 S3 ANDOR VOTE (S1)?S3:S2
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 0 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 1 1 1

VPTERNLOGD zmm0 {k2}, zmm15, zmm3/[rax], imm8

Motivation for Conflict Detection

• Sparse computations are common in HPC, but hard to
vectorize due to race conditions

• Consider the “histogram” problem:

index = vload &B[i] // Load 16 B[i]
old_val = vgather A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++; }

• Code above is wrong if any values within B[i] are duplicated

− Only one update from the repeated index would be registered!

• A solution to the problem would be to avoid executing the sequence gather-

op-scatter with vector of indexes that contain conflicts

Conflict Detection – how does it work?

conflict-free

mask 1 1 1 0 10 01

2 79 3 2 2 78

mask

indices

1 1 1 1 11 11

It
e

ra
ti
o

n
 1

conflict-free

mask
0 0 0 1 00 10

9 3 2 2 72 78

mask

indices

0 0 0 1 01 10

It
e
ra

ti
o
n
 2

conflict-free

mask
0 0 0 0 01 00

9 3 2 2 72 78

mask

indices

0 0 0 0 01 00

It
e
ra

ti
o
n
 3

Conflict Free Code

j = vload &B[i]
pending_elts = 0xFFFF;
do {
mask = conflict_free(j, pending_elts)
val_A = vgather {mask} A, j // Grab A[j]
val_A++ // Compute new values
vscatter A {mask}, j, val_A // Update A[j]
pending_elts ^= mask // remove done idx

} while (pending_elts)

for(i=0; i<16; i++)
{
j = B[i];
A[j]++;

}

CDI instr.

VPCONFLICT{D,Q} zmm1{k1},

zmm2/mem

VPBROADCASTM{W2D,B2Q} zmm1, k2

VPTESTNM{D,Q} k2{k1}, zmm2,

zmm3/mem

VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

VPCONFLICT instruction detects elements with previous conflicts in a vector of indexes

Allows to generate a mask with a subset of elements that are guaranteed to be conflict free

Summary

• Continuous demand for high performance computing

solution fuels innovation in architectures to address technical

challenges

• Intel offers highly optimized architectures for HPC solutions

• AVX-512 is the greatest addition to x86 ISA family to drive

continuous performance improvements

Questions?

